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Critically assessing sodium-ion 
technology roadmaps and scenarios for 
techno-economic competitiveness against 
lithium-ion batteries
 

Adrian Yao    1,2  , Sally M. Benson3 & William C. Chueh    1,2,3 

Sodium-ion batteries have garnered notable attention as a potentially 
low-cost alternative to lithium-ion batteries, which have experienced 
supply shortages and price volatility for key minerals. Here we assess their 
techno-economic competitiveness against incumbent lithium-ion batteries 
using a modelling framework incorporating componential learning curves 
constrained by minerals prices and engineering design floors. We compare 
projected sodium-ion and lithium-ion price trends across over 6,000 
scenarios while varying Na-ion technology development roadmaps, supply 
chain scenarios, market penetration and learning rates. Assuming that 
substantial progress can be made along technology roadmaps via targeted 
research and development, we identify several sodium-ion pathways that 
might reach cost-competitiveness with low-cost lithium-ion variants in the 
2030s. In addition, we show that timelines are highly sensitive to movements 
in critical minerals supply chains—namely that of lithium, graphite and 
nickel. Our modelled outcomes suggest that being price advantageous 
against low-cost lithium-ion variants in the near term is challenging and 
increasing sodium-ion energy densities to decrease materials intensity is 
among the most impactful ways to improve competitiveness.

The energy transition requires massive deployment of batteries for 
electric vehicles (EVs) and stationary energy storage systems (ESS). 
Lithium-ion (Li-ion) batteries have been responsible for nearly all new 
deployments of storage in recent years1–3, largely enabled by the tre-
mendous cost declines over the past three decades of commercializa-
tion characterized by an aggressive learning rate where prices have 
fallen by more than 97% since they were first commercialized in 19914,5. 
This trend is reflected in the average Li-ion cell prices shown in Supple-
mentary Fig. 1 aggregated from the industry data contributors to this 
work1–3,6, which also resolves the diverging price trajectories of NMC-type  

(nickel manganese cobalt oxide) and LFP-type (lithium iron phosphate) 
cathode chemistries. However, rapid Li-ion demand growth has recently 
placed a substantial burden on the minerals supply chain—namely that of 
lithium, nickel, graphite and cobalt—resulting in a first-ever increase in the 
average Li-ion cell price index in 20223, which subsequently fell again as 
minerals prices plummeted7–9. This has prompted some to escalate con-
cerns regarding the possible overdependence on Li-ion and risks of pro-
duction bottlenecks, supply chain shocks and geopolitical constraints.

Sodium-ion (Na-ion) batteries present a potentially viable 
near-term substitute for Li-ion for two primary reasons: (1) increased 
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costs into a ‘noisy’ price floor of fuel commodities and improving costs 
of plant construction owing to technological learning19. In this case, 
however, we do not disaggregate the materials component learning 
curves further into the technical factors identified above, and we high-
light this area for future work.

Once the floor-constrained learning curves are obtained for each 
material component, they are subsequently summed according to 
their mass or areal intensities derived from physically accurate cell 
modelling. To capture the steady decreases in materials intensities 
over time (which have contributed greatly to Li-ion price declines so 
far4,5), we model cell designs in a bottoms-up fashion that are repre-
sentative of past commercial products, present state-of-the-art and 
future designs considering anticipated improvements for materials 
performance and cell engineering. On the basis of differences in materi-
als intensities between cell designs, which are each ascribed to a point 
in time, we construct roadmaps by fitting curves with asymptotic limits 
defined by theoretical or practical engineering limits. This approach 
is similar to previous literature disaggregating solar photovoltaic 
device-level price reductions based on observable technical factors 
such as silicon consumption and wafer sizes21. However, in this work, 
we add resolution by fitting materials intensity curves for each compo-
nent based on bottoms-up modelling, and we do not decompose the 
costs of manufacturing further into other technical factors. We justify 
this based on knowing that battery cell costs are dominated by their 
bill-of-materials, and we seek to specifically probe how materials and 
cell design improvements can alter price trajectories. Our modelled 
manufacturing overhead cost trends therefore include cost savings 
from improved processing yield and economies-of-scale. To obtain 
bill-of-materials and manufacturing costs, we leverage the Battery 
Performance and Cost (BatPaC) process-based model22 developed by 
Argonne National Laboratory to recreate cell designs (Methods). As 
BatPaC specifically models state-of-the-art manufacturing, we only 
use the manufacturing overhead cost component of present-day cell 
designs and subsequently fit learning curves against historical data on 
manufacturing costs to estimate future trends.

Our models rely upon a wide-ranging collection of sources 
obtained from industry data contributors to ensure accuracy and 
relevance. They include Benchmark Mineral Intelligence, Wood 
Mackenzie, BloombergNEF, Avicenne Energy, S&P Global and other 
commercial reports23,24 (Supplementary Table 1 summarizes the data 
sources of key mineral inputs). In addition, we validate and confirm 
accuracy and relevance by surveying a panel of industry experts to 
obtain inputs on realistic price figures, state-of-the-art cell designs 
and production costs25.

Establishing Li-ion baselines
We divide the effort to construct Li-ion baseline curves into two parts 
as discussed above: (a) establishing floor-constrained materials 
component learning curves and (b) establishing physically accurate 
technology roadmaps. We define 2023 as present day. Previous years 
are designated historical and static, which inform parameter fitting. 
Forward years are projected, driven by the inputs of minerals pricing 
and market growth forecasts.

Li-ion materials component learning curves
An example procedure for establishing the floor-constrained materi-
als component learning curves is illustrated in Fig. 1 for NMC cathode 
material. Historical price assessments were tabulated from industry 
and literature sources to establish a time series starting at or before 
20102,5,23,26,27. We also collected data on historical production quanti-
ties to enable calculation of cumulative ‘experience’. Both are shown in 
Fig. 1a. Historical pricing for key minerals were obtained from industry 
data contributors1,2,28,29. Historical prices were also collected from the 
United States Geological Survey (USGS) mineral commodity summa-
ries dating back to 199130, and all price figures were inflation-adjusted 

abundance and availability of sodium suggests lower prices and 
(2) drop-in compatibility with Li-ion manufacturing infrastructure 
suggests rapid scaling timelines. Therefore, in response to severe 
post-COVID lithium price spikes, manufacturers recently announced 
over 240 GWh of Na-ion cell manufacturing pipeline through 203010, 
promising lower prices than Li-ion. However, exactly if, when and by 
how much Na-ion batteries will be price advantageous is still largely a 
matter of speculation.

Learning curves have been widely used in forecasting techno-
logical progress and price since patterns of improvement were first 
postulated by Wright for manufacturing airplanes11. The typical learn-
ing curve (Wright’s law) predicts price reductions as a function of 
cumulative production (‘learning-by-doing’) and has been statistically 
shown to produce accurate forecasts across wide-ranging sectors12, 
including energy technologies13. Given the industrial importance of 
Li-ion batteries, several studies have sought to characterize their price 
trends using the conventional form of Wright’s law4,14–16 (equation (1) in 
Methods), whereas others have ascribed additional descriptors, such 
as learning-by-researching or economies-of-scale, to understand their 
historic trends4,5,17. However, conventional learning curves unrealisti-
cally assume infinite cost reductions approaching zero, which neglects 
limits set by underlying minerals. Therefore, yet other approaches have 
sought to additionally constrain the learning curve with a minerals 
price floor to produce more realistic projections18,19. It is worth noting 
that not all price floors or additional parameters can be assumed to 
be effective. Price floors based on expert opinion, for example, have 
historically been shown to be unrealistic20, and extra parameters have 
been shown to reduce model performance owing to overfitting12.

In this work, we propose an approach that combines componen-
tial, floor-constrained learning curves for individual material compo-
nents with technical development roadmaps that also exhibit learning 
behaviour to better forecast future price trends—balancing model 
simplicity and physical accuracy. We then use this approach to forecast 
battery price trends for Li-ion and Na-ion under various technological, 
market and supply chain conditions to identify strategies that improve 
the techno-economic competitiveness of Na-ion.

Combining learning curves with technology 
roadmaps
We construct historical and forecasted aggregate price curves by incor-
porating knowledge of both (a) material component prices (in $ kg−1 or 
$ m−2), which evolve via learning-by-doing as a function of cumulative 
experience, and (b) materials intensities (kg kWh−1), which evolve due 
to continued cell engineering and materials advancements as a func-
tion of time. We institute practical floors for both—using minerals price 
floors for the former and engineering limits for the latter. This approach 
thus combines a modified Wright’s law and a modified Moore’s law, 
represented by equations (3) and (4) in Methods, respectively.

For each material component in a battery cell, we construct indi-
vidual learning curves and institute a price floor based on their known 
elemental composition of benchmarkable key minerals, which dynami-
cally evolve with time. Therefore, each of our material component 
costs comprises two elements: (1) a fluctuating materials price floor 
representing the weighted sum of underlying minerals from a time 
series of historical and forecasted prices, and (2) decreasing costs of 
non-mineral inputs represented by a learning curve that scales with 
historical and forecasted market share. Non-mineral inputs include 
costs associated with capital equipment, operating costs, production 
scrap from yield, chemical conversion inefficiencies and others. The 
downward trajectory of the learning curve component is consistent 
with expectations of technological improvements owing to process-
ing innovation and optimization as well as implicit assumptions of 
economies-of-scale. By contrast, market-driven volatility is expected 
in the materials price floor component. This approach is analogous 
to previous literature decomposing coal-fired electricity generation 
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to USD2023. Aggregated minerals prices are shown in Supplemen-
tary Fig. 2, but a subset of the benchmarkable minerals comprising 
NMC—lithium, nickel, manganese and cobalt—are shown in Fig. 1b. 
Subsequently, the weighted sum of each mineral component is added 

according to their stoichiometric ratios to produce a material com-
ponent price floor, shown in Fig. 1c (see Supplementary Note 1 for 
additional details, Supplementary Table 2 for a comprehensive list of 
material components and their compositions, and Supplementary Fig. 3 
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Fig. 1 | Establishing floor-constrained materials component learning curves.  
A step-by-step process (flowchart in the left column) of fitting material 
component learning rates based on historical data (centre column) and then 
projecting future materials prices based on forecasted demand and minerals 
prices (right column). a, Historical material component price assessments 
for NMC cathode active material mapped against historical material demand 
obtained from industry sources. b, Historical prices of key benchmarkable 
minerals in NMC—namely lithium, nickel, manganese and cobalt—obtained from 
industry sources. Shaded regions show 95% CI. c, Historical material component 
price floors representing a weighted sum of underlying minerals according to 
their stoichiometric ratios. See Supplementary Note 2 and Supplementary Figs. 4 
and 5 for details on capturing the evolution in NMC stoichiometry—represented 
here as an ‘NMC blend’. Price floors of other material components also shown.  
d, Fitting a learning curve for the non-mineral cost components of NMC. 

Combining the learning curve with the price floor shown in c, a total material 
component price can be obtained, which agrees with historical price 
assessments. e, Forecasted demand for NMC material based on market 
projections obtained from industry partners. f, Forecasted minerals prices 
for the same key elements in b obtained from industry partners. g, Calculated 
material component price floors based on forecasted minerals prices.  
h, Forecasted material component prices obtained by combining the price floor 
shown in g with a continuation of the same learning curve obtained in d while 
keeping the learning rate parameter fixed. We recognize here our assumptions 
that learning rates remain fixed over a forecasted timespan longer than the fitted 
historical data. Long-term minerals price forecasts are also based on expert 
opinion of industry partners. Therefore, these forecasted prices represent a 
simulated future based on best knowledge today. See Supplementary Note 4 for 
additional high/mid/low minerals price simulations.
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for calculated component price floors for key materials). For NMC-type 
materials that have historically experienced an evolution in stoichiom-
etry, we take a volume-weighted average of each ‘nodal’ composition 
to reflect a representative blend at every time step (Supplementary 
Note 2 and Supplementary Figs. 4 and 5). Finally, with knowledge of 
component price floors, actual historical price assessments and cumu-
lative production experience, this sufficiently constrains the modified 
Wright’s law to leave the learning rate as the only fitting parameter, 
per equation (3) in Methods. The learning curve then represents the 
non-mineral costs associated with the material component and is fit 
in a way so that the total (price floor + learning curve) matches histori-
cal price assessments, shown in Fig. 1d. See Supplementary Note 3 for 
additional comments on sources of uncertainty given data scarcity.

Once a characteristic learning rate is established, forecasting 
future prices can be performed based on forecasted market growth 
and minerals pricing, assuming that learning rates do not change. It 
is worth noting that endogeneity is expected between the two, but 
we leave them independent. In addition, we recognize that the fore-
casted timespan is longer than that of the historical data used to fit the 
constant learning rate, but this provides a first-order approximation 
sufficient for future simulation purposes. Forecasted Li-ion market 
growth from several market intelligence sources were approximated 
with Gompertz functions to obtain continuous curves (Methods and 
Supplementary Fig. 6), where the ‘LIB Base Case’ scenario assumes no 
appreciable Na-ion deployment and LFP market penetration reach-
ing 50% market share saturation by 2050 (Supplementary Fig. 7). This 
can then be translated to NMC demand in Fig. 1e by mass. Forecasted 
minerals prices are again provided by data contributors and aggre-
gated in Fig. 1f. As predicting future price movements of key minerals 
is inherently challenging, we also separately model fixed-price high/
mid/low forecasted scenarios for lithium and nickel to test sensitivity 
(Supplementary Note 4 and Supplementary Figs. 8 and 9). Material 
component price floors can again be calculated (Fig. 1g). To ensure con-
tinuity between historical and forecasted materials price time series, 
both were constrained to converge on present-day (2023) pricing, 
which were obtained from various industry sources and aggregated for 
robustness2,23,25–27 (a summary of Li-ion component price assessments 
is presented in Supplementary Fig. 10). The final result is a material 
component price forecast that is responsive to dynamic minerals price 
movements as well as market penetration (Fig. 1h).

We repeat the above procedure for a full set of material compo-
nents used in Li-ion batteries, including various cathode material 
chemistries. Whereas NMC was used as an illustrative example above, 
hereafter we focus on LFP in the Main Text as it is widely considered the 
more relevant comparison with Na-ion with respect to performance and 
cost. Using the same methodology, the price forecast for LFP material 
is shown in Fig. 2a. The remaining material price curves are presented 
in Supplementary Figs. 11–18, and their fitted learning rates are sum-
marized in Fig. 2b compared with average historical Li-ion learning 
rates aggregated from previous literature3,4,14,15,17.

Li-ion technology roadmaps
To establish Li-ion technology roadmaps, physically accurate models 
of NMC and LFP cell designs representing past and present were devel-
oped. Present cell designs were modelled based on recent teardowns 
of state-of-the-art commercial cells published in literature31–33. Past 
cell designs were also modelled based on previously published com-
mercial cell teardowns in literature and industry reports documenting 
engineering progress at the time of their publication34–36 (Supplemen-
tary Figs. 19–23). This enabled fitting of materials intensity trends that 
correspond with development roadmaps (Supplementary Figs. 24 and 
25). Note here that we do not model next-generation Li-ion roadmaps 
(lithium manganese iron phosphate cathodes, silicon anodes and so on), 
which could substantially reduce materials intensity. Thus, our analysis 
presents a conservative case of anticipated price reductions for Li-ion.

Finally, combining material component price forecasts and materi-
als intensity roadmaps per equation (12), complete Li-ion price curves 
were constructed as shown in Fig. 2c for LFP (NMC component curve 
stack-up shown in Supplementary Fig. 26). The final LFP price curve 
is shown in Fig. 2d with predicted prices reaching $51 kWh−1 by 2030 
assuming that lithium prices at the time are just under $22,000 tonne−1 
(and as low as $45 kWh−1 if lithium prices are ~$10,500 tonne−1 per the 
low price scenario in Supplementary Fig. 8 and Supplementary Note 4). 
Supplementary Fig. 27 shows LFP and NMC price forecasts combined.

Deconvoluting the sources of learning
Examining the fitted componential learning rates, learning rates appear 
correlated with processing complexity, which may be anecdotally 
associated with the number of required control parameters during 
production (a clearer definition and correlation of complexity to learn-
ing rate is a subject of future work). Higher complexity processes (for 
example, cathode synthesis and cell assembly) tend to have higher rates 
of learning, whereas lower complexity processes (for example, metal 
foil and anode production) tend to have lower rates (see Supplemen-
tary Note 5 for further discussion). However, compared with previous 
literature on Li-ion learning rates, we observe that our componential 
learning rates are all lower than the aggregate average rate experienced 
by historical cell prices (Fig. 2b) of 21.1 ± 3.7% (refs. 3,4,14,15,17), which 
suggests that there must be another key contributor responsible for 
the aggressive price reductions in Li-ion. This can be explained by the 
technical advancements in the design of Li-ion cells over the past several 
decades, now requiring substantially lower materials intensity on a 
per-kWh basis than before4,5. Specifically, the shift from cells optimized 
for power to those optimized for energy enabled higher active material 
utilization5,16,36. The steady improvements to material specific capaci-
ties have also contributed to this phenomenon.

Therefore, the aggressive Li-ion price trends appear to be a story 
of modest price reductions in materials from learning-by-doing com-
pounded by substantial engineering advancements and learnings. This 
deconvolution of the traditional learning model into key constituent 
contributors is an important nuance to forecast realistic price trends 
of incumbent and emerging technologies such as Li-ion and Na-ion, 
respectively. To illustrate, Fig. 2d additionally compares price forecasts 
of LFP cells using our method—accounting for minerals price and engi-
neering design floors—against the typical unconstrained single-factor 
learning curve form of Wright’s law (equation (1) in Methods) utiliz-
ing the historical average Li-ion rate. This curve nearly intersects the 
calculated LFP minerals price floor in 2050, which may be unrealistic 
and overly optimistic.

Forecasting Na-ion cell development roadmaps
Like Li-ion, Na-ion is an umbrella term encompassing several mate-
rial chemistries generally categorized by cathode material classes. 
They include transition metal layered oxides, polyanions and Prussian 
Blue analogues37. Recent commercialization efforts indicate strong 
momentum behind (i) layered oxides with a general formula of Nax(M)
O2 (x ~ 1, M = Ni, Fe, Mn, Cu) with NaNixMny(M)1−x−yO2 (NaNM) being the 
most common and (ii) vanadium-free mixed polyanions with the for-
mula Na4Fe3(PO4)2(P2O7) (NFPP)25. In almost all instances, disordered 
hard carbons (HCs) are used as Na-ion anode materials instead of the 
crystalline graphite used in Li-ion batteries owing to their low sodium 
storage capacities38. Alternative anodes to HCs include emerging tech-
nology directions such as (i) metallic tin (Sn) that alloys with sodium39 
or (ii) ‘anode-free’ configurations that electrodeposit and strip sodium 
metal directly on current collectors40,41. Here, in reference to NaNM, 
we specifically model NaNi0.33Mnx(M)0.67−xO2, where M includes Mg 
and Ti dopants and that are currently being commercialized42–44. As 
the non-nickel transition metals contribute negligible minerals costs 
and redox activity44, our NaNM archetype also functionally represents 
compositions such as NaNi0.33Fe0.33Mn0.33O2 (NFM111). Given the recent 
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interest in replacing nickel with earth-abundant elements such as iron 
and manganese owing to high costs, we also model a material such as 
Na0.67Fe0.5Mn0.5O2 (NaFM). However, as these materials still suffer from 
unresolved performance challenges, we model technical roadmaps that 
gradually reduce nickel to 0% by ~2040 (Supplementary Note 6 and 
Supplementary Figs. 28 and 29)—analogous to the gradual reduction of 
cobalt content in NMC cathodes over the years. This is modelled sepa-
rately from roadmaps that maintain a static 33% nickel stoichiometry.

The three key market segments modelled were stationary ESS, two/
three-wheelers and micromobility (TTW/MM), and EVs. Specifically, 
we consider three hypothetical Na-ion market growth scenarios with 
increasing degrees of penetration, ranging from the most conservative, 
100% Na-ion penetration into ESS by 2040, to the most aggressive, 100% 
penetration into ESS by 2035, 100% of TTW/MM by 2040 and 25% EVs by 
2040 (Supplementary Fig. 6). Note that the most conservative market 
penetration scenario matches more closely to forecasts provided by 
industry data contributors.

Given the importance of capturing engineering advancements on 
techno-economics, we model a multitude of Na-ion cell development 
roadmaps for NaNM|HC, NaFM|HC, NFPP|HC, NaNM|Sn, NaFM|Sn, 
NFPP|Sn, NaNM|Anode-free and NaFM|Anode-free cell designs (see 
Supplementary Figs. 30–47 for details on 18 different Na-ion cell 
designs and Supplementary Figs. 48–60 for details on modelled 
roadmaps). These roadmaps assume gradual improvements from 
state-of-the-art 2024 designs towards future technical advancements 
by 2030 that increase energy densities and thereby reduce prices. See 

Methods for details on fitting trends with a modified Moore’s law. A 
summary of the modelled technical roadmaps is tabulated in Table 1.

Evaluating Roadmap ‘NaNM|HC 7’ as an example: a NaNM|HC 
Baseline cell design (Supplementary Fig. 30) evolves to experience 
an increase in HC specific capacity from 330 mAh g−1 to 400 mAh g−1, 
an increase in cell operating voltage from 4.0 V to 4.2 V, and a 20% 
increase to NaNM specific capacity (to ~175 mAh g−1 measured from 
2.0 V to 4.25 V) (Supplementary Fig. 36)—all by 2030. The resulting 
materials intensity trends are shown in Fig. 3a. Pricing for key Na-ion 
materials components are obtained by surveying industry expert 
sources to ensure commercial relevance25 (Methods). These values 
are summarized in Fig. 3b. Applying various learning rates and market 
growth assumptions, we forecast Na-ion price curves via our compo-
nential construction methodology. Figure 3c illustrates a scenario with 
the most conservative market penetration (100% Na-ion penetration 
into ESS by 2040; Supplementary Fig. 6) and with novel cumulative 
experience applied to the anode material only (Supplementary Note 7).

It is worth highlighting our key assumptions. Here we assume 
(1) drop-in compatibility with existing Li-ion manufacturing infra-
structure, which implies immediate high-yield production and no 
new manufacturing learnings (Supplementary Note 7 and Supple-
mentary Fig. 61), (2) decoupled market penetration and technology 
pricing, whereby endogeneity captured within a typical demand curve 
is ignored for the sake of modelling and understanding intervention 
opportunities, and (3) transferable learning rates from Li-ion to Na-ion, 
where cathodes, anodes and other components learn at their same 
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Fig. 2 | Componential floor-constrained construction of technology price 
curves. a, Example material component price curve generation for LFP material. 
A learning curve (in blue) is fit against historical conversion cost data to capture 
experience as cumulative production increases (grey bars and dashed black line), 
while a minerals price floor (in green) rides upon the learning curve. Reasonable 
agreement between the generated price curve and average prices collected 
from industry sources is observed. b, Fitted learning rates for key Li-ion battery 
(LIB) material components (NCA, nickel-cobalt-aluminium oxide; LCO, lithium 
cobalt oxide; Nat. graphite, natural graphite; Syn. graphite, synthetic graphite) 
compared against the historical average learning rate (LR) for Li-ion compiled 

from literature and industry reports—shown in inset. See Supplementary Note 
5 for details. c, Total price curve for LFP-type cells constructed by summing up 
all constituent material components based on cell design models that inform 
materials intensity per energy content stored. See Supplementary Fig. 26 for 
equivalent plots for NMC. d, Forecasted LFP Li-ion price curve for the baseline 
scenario, showing good agreement with historical averages. A typical single-
factor learning curve using the historical average learning rate (established in b) 
is also shown for comparison with potentially overly optimistic outcomes. CIs 
capture underlying uncertainty in minerals prices, starting materials prices and 
learning rates.
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respective rates between the two alkali chemistries. This last assump-
tion may be supported by the earlier observation that materials produc-
tion with similar degrees of process complexity have similar rates of 
learning (Supplementary Note 5), but more aggressive learning rates 
are also evaluated in our scenarios analysis below. We note that the 
first two assumptions enable a best-case scenario to model Na-ion’s 
techno-economic competitiveness as a starting point. In addition, we 
do not include next-generation Li-ion roadmaps (lithium manganese 
iron phosphate cathodes, silicon anodes and so on) to again evaluate 
a best-case scenario for Na-ion. We finally emphasize that here we 
are only assessing the technologies at the cell level with the price of 
stored energy ($ kWh−1) as the primary figure of merit. Therefore, this 
work does not capture systems-level considerations (for example, 
potential savings on pack integration owing to enhanced safety or 
reduced thermal management) or alternative performance-enabled 
economic considerations (for example, potentially lower levelized 
price of storage owing to increased cycle life). We address these addi-
tional complexities in future work.

Modelling scenarios to find conditions for 
competitiveness
Using the above approach, we evaluate 6,048 combinations of sce-
narios, all assuming GWh-scale production for Na-ion commences  

in 2024. The scenario variables evaluated are detailed in Supplemen-
tary Table 3. For each scenario, the Li-ion and Na-ion price curves are 
calculated and compared, producing plots exemplified by those shown 
in Fig. 4a. This example illustrates a ‘NaFM|HC 2’ roadmap where an 
initially 33% nickel stoichiometry cathode evolves to ~0% by 2040 while 
maintaining the same specific capacity, and an HC anode evolves to 
increase its specific capacity to 400 mAh g−1 by 2030. Owing to the 
reduction in nickel content, the minerals price floor decreases sub-
stantially between 2024 and 2035.

Given that the forecasted curves carry uncertainty from confi-
dence intervals (CIs) of minerals prices (Supplementary Fig. 2), starting 
materials prices (Fig. 3b) and learning rates (Fig. 2b), we use methods 
established in previous forecasting literature45 to quantify expected 
timelines for price parity and advantage by calculating the probability 
at each time step that one technology is lower priced than the other. 
These probability plots are shown in the right-hand side of Fig. 4a,b 
comparing LFP against the modelled example Na-ion scenarios. We 
further define a ‘Price Parity’ condition as the point in which Na-ion has 
≥20% probability of being lower priced than LFP, and a ‘Price Advantage’ 
condition when that probability exceeds 80%. The yellow hatched 
regions in Fig. 4a,b therefore mark the periods in which a Na-ion tech-
nology and LFP are competitive in pricing and may be considered 
substitutes, performance notwithstanding.

Table 1 | Summary of modelled Na-ion technical development roadmaps including gravimetric and volumetric energy 
densities (GED and VED) of modelled large-format pouch cells

Roadmap name Starting cell design (2024) Improved cell design (2030) GED/VEDWh kg−1)/(Wh l−1)

2024 2030

NaNM|HC 0 NaNM|HC Baseline ⇒ NaNM|HC Baseline (no improvements) 134/272

NaNM|HC 1 NaNM|HC Baseline ⇒ Increased electrode loadings 134/272 142/295

NaNM|HC 2 NaNM|HC Baseline ⇒ Anode capacity increase to 400 mAh g−1 134/272 157/325

NaNM|HC 3 NaNM|HC Baseline ⇒ Cathode 20% capacity increase 134/272 160/314

NaNM|HC 4 NaNM|HC Baseline ⇒ Anode and cathode capacity increase 134/272 174/347

NaNM|HC 5 NaNM|HC 4.2 V Baseline ⇒ Anode and cathode capacity increase at 4.2 V 134/272 196/376

NaNM|HC 6 NaNM|HC Baseline ⇒ Anode capacity increase to 400 mAh g−1 at 4.2 V 134/272 181/359

NaNM|HC 7 NaNM|HC Baseline ⇒ Anode and cathode capacity increase at 4.2 V 155/303 196/376

NaFM|HC 1 NaFM|HC Baseline ⇒ Increased electrode loadings 134/272 142/295

NaFM|HC 2 NaFM|HC Baseline ⇒ Anode capacity increase to 400 mAh g−1 134/272 157/325

NaFM|HC 3 NaFM|HC Baseline ⇒ Cathode 20% capacity increase 134/272 160/314

NaFM|HC 4 NaFM|HC Baseline ⇒ Anode and cathode capacity increase 134/272 174/347

NaFM|HC 5 NaFM|HC 4.2 V Baseline ⇒ Anode and cathode capacity increase at 4.2 V 134/272 196/376

NaFM|HC 6 NaFM|HC Baseline ⇒ Anode capacity increase to 400 mAh g−1 at 4.2 V 134/272 181/359

NaNM|Sn 0 NaNM|Sn Baseline ⇒ NaNM|Sn Baseline (no improvements) 185/476

NaNM|Sn 1 NaNM|Sn Baseline ⇒ Cathode 20% capacity increase 185/476 216/551

NaFM|Sn 0 NaFM|Sn Baseline ⇒ NaFM|Sn Baseline (no improvements) 185/476

NaFM|Sn 1 NaFM|Sn Baseline ⇒ Cathode 20% capacity increase 185/476 216/551

NFPP|HC 0 NFPP|HC Baseline ⇒ NFPP|HC Baseline (no improvements) 111/210

NFPP|HC 1 NFPP|HC Baseline ⇒ Increased electrode loadings 111/210 119/226

NFPP|HC 2 NFPP|HC Baseline ⇒ Anode capacity increase to 400 mAh g−1 111/210 126/241

NFPP|Sn 0 NFPP|Sn Baseline ⇒ NFPP|Sn Baseline (no improvements) 137/305

NFPP|Sn 1 NFPP|Sn Baseline ⇒ Increased electrode loadings 137/305 147/330

NaNM|AF 0 NaNM|Anode-free Baseline ⇒ NaNM|Anode-free Baseline (no improvements) 207/547

NaNM|AF 1 NaNM|Anode-free Baseline ⇒ Increased electrode loadings 207/547 239/635

NaNM|AF 2 NaNM|Anode-free Baseline ⇒ Cathode 20% capacity increase 207/547 283/734

NaFM|AF 0 NaFM|Anode-free Baseline ⇒ NaFM|Anode-free Baseline (no improvements) 207/547

NaFM|AF 1 NaFM|Anode-free Baseline ⇒ Cathode 20% capacity increase 207/547 283/734
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Figure 4b models an identical set of assumptions as Fig. 4a with 
the exception of a hypothetical graphite supply shock in 2027 that 
causes a permanent offset in prices but continues to learn at the same 
rate (see Supplementary Note 8 and Supplementary Fig. 62 for details). 
This enables analysis of techno-economic competitiveness and risk 
considering potential supply chain disruptions. In the absence of a 
graphite supply shock condition as illustrated in Fig. 4a, the Price Par-
ity timeline is extended from 2032 to 2035, and the Price Advantage 
timeline is delayed substantially from 2038 to 2047. This large dispar-
ity is a result of the similar slopes of the price curves, which are nearly 
coinciding during this period.

Discussion
It is worth emphasizing that whereas our approach enables calcula-
tion of timelines to Price Advantage, the primary value proposition is 
understanding the impacts of various market scenarios on the viability 
of competing technology roadmaps instead of predicting specific 
years in which we anticipate crossover. The uncertainty associated 
with market forces—minerals pricing, demand growth and geopolitical 
conflicts—simply makes it too challenging to predict exact timelines 
with accuracy and is not the key objective. By contrast, our approach 
enables quantitative evaluation of the relative robustness of certain 
technology roadmap propositions to withstand potentially disrup-
tive market forces, thereby increasing confidence or challenging 
assumptions in the risk-reward profile motivating pursuit of technology 
development. Central to this approach involves deeply engaging with 

industry practitioners and soliciting feedback reflecting the realities 
of technology commercialization46.

Thus, a key outcome from our scenarios modelling is to reveal key 
trends in the conditions enabling maximum Na-ion techno-economic 
competitiveness. Figure 5 shows a clustered plot of all 6,048 scenarios 
categorized by gravimetric energy density and supply chain conditions, 
where a strong dependence on both factors reasonably describes the 
modelled timelines to Na-ion Price Advantage over LFP. When supply 
chain conditions are unfavourable for Li-ion (specifically LFP)—such as 
high lithium prices, graphite supply shocks or both—Na-ion competi-
tiveness is accelerated across the board. By contrast, when supply chain 
conditions are unfavourable for Na-ion (specifically nickel-containing 
chemistries), competitiveness is severely hindered. As indicated by the 
trends from left to right, pursuing technology development roadmaps 
that maximize energy densities is important to accelerate timelines to 
competitiveness. Note that a large subset (2,522) of scenarios do not 
produce conditions for Na-ion Price Advantage before 2050, repre-
sented by the open circles in Fig. 5. Importantly, however, this does not 
mean that Na-ion is not competitive. A similar clustered plot as Fig. 5 in 
Supplementary Fig. 63 shows the timelines to Na-ion Price Parity with 
LFP, illustrating that over 40% of all modelled scenarios reach a Price 
Parity condition on or before 2030, and the average ‘parity period’ 
spans 5.6 ± 3.6 years. With Na-ion being a competitive, viable substi-
tute to Li-ion having similar price curves (assuming that performance 
parity is achieved), any disruptions to the Li-ion supply chain will likely 
present Na-ion as an immediately price advantageous alternative.
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Fig. 3 | Exemplary Na-ion price curve construction based on cell modelling, 
road mapping and realistic materials price assessments. a, Fitted materials 
intensity trends that approach asymptotic engineering floors (horizontal dashed 
lines), shown here for Roadmap ‘NaNM|HC 7’. AM, active material; CC, current 
collector. b, Surveyed price assessments for present-day Na-ion materials.  
The number of surveyed sources per material component (n) are also shown,  

and the 95% CI indicates the high- and low-range estimates of prices. Note 
that each source may provide more than one value if also providing a range 
(Methods). Phen., phenolic. c, Componential construction of Na-ion price curve 
for given technical roadmap. Predicted bounds illustrate CIs on the total curve 
from underlying uncertainty in minerals prices, starting materials prices and 
learning rates.
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For example, if lithium prices increase between now and 2027 
and remain high (~$50,000 tonne−1 lithium carbonate equivalent 
(LCE); Supplementary Fig. 8 and Supplementary Note 4), over 55% 
of all Na-ion technical roadmaps lead to a Price Advantage condition 
before 2035. By contrast, if lithium minerals prices remain low (around 
$10,000 tonne−1 LCE; Supplementary Fig. 8 and Supplementary Note 
4), there will be virtually no Na-ion development scenarios that will 
result in a Price Advantage condition without a coinciding supply chain 
disruption in graphite (or potentially other Li-ion specific materials). 
For reference, the spot price of lithium at the time of this writing (2024) 
averages $10,000–15,000 tonne−1—the result from oversupply of bat-
tery metals owing to a slump in EV sales in the latter half of 20237,47. 
Whether lithium prices can continue to stay low is thus a question 
with profound implications, especially on the competitiveness of 
Na-ion batteries.

The fastest and most certain way for Na-ion to be price advanta-
geous is to reduce materials intensity by increasing materials and 
cell-level energy densities. This is supported quantitatively in the 
parameter sensitivity analysis shown in Fig. 6, where some of the big-
gest drivers of forecasted Na-ion cell prices in 2030 and 2040 are acces-
sible upper voltage cut-offs, cathode and anode specific capacities, and 
electrode thicknesses. Increasing accessible upper voltage cut-offs 
(a capability specific to layered oxide cathodes with solid-solution 
intercalation behaviour) simultaneously increases available specific 
capacity and the nominal voltage, which unsurprisingly compounds 
to provide the largest feature importance. However, this is not always 
an available option owing to material limitations, gas release or chal-
lenges with power electronics upon systems integration25 (see caption 
in Supplementary Fig. 30). Therefore, increasing specific capacity 
alone is an important strategy. In nickel-containing cathodes, this 
can ideally be done in conjunction with minimizing nickel content 

2015 2020 2025 2030 2035 2040 2045 2050
0

25

50

75

100

125

150

175

200

C
el

l p
ric

e 
($

 k
W

h–1
)

2015 2020 2025 2030 2035 2040 2045 2050
0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f N
IB

 p
ric

e 
ad

va
nt

ag
e

Parity year
2032

Advantage year
2038

NaFM | HC 2 roadmap - NIB market penetration 1 - baseline Li and Ni - graphite supply shock

2015 2020 2025 2030 2035 2040 2045 2050
0

25

50

75

100

125

150

175

200

C
el

l p
ric

e 
($

 k
W

h–1
)

LFP historical range
Forecasted avg LFP price ± 95% CI
LFP minerals floor
Forecasted avg NIB price ± 95% CI
NIB minerals floor

2015 2020 2025 2030 2035 2040 2045 2050
0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f N
IB

 p
ric

e 
ad

va
nt

ag
e

Parity year
2035

Advantage year
2047

NaFM | HC 2 roadmap - NIB market penetration 1 - baseline Li and Nia

b

Fig. 4 | Comparative price curve assessments to evaluate techno-economic 
competitiveness considering hypothetical Li-ion supply chain disruptions. 
a,b, Example of Roadmap ‘NaFM|HC 2’ with a conservative market penetration 
(NIB Market Penetration 1), baseline lithium and nickel prices, and no 
graphite supply shock (a) or a hypothetical graphite supply shock (b) in 2027. 

Comparative price curves (left) and probability profiles (right) allow evaluation 
of Price Parity and Price Advantage timelines. The example shown in b has a 
4-year timeframe (yellow) where Na-ion and LFP are closely competitive, whereas 
the example in a has a 12-year competitive timeframe.
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owing to its relative feature importance. It is worth noting here that the 
uncertainties associated with fitted learning rates and starting prices 
of material components (which are further elaborated in Supplemen-
tary Note 3) are unlikely to affect the conclusions significantly owing 
to the low variability in present-day price assessments compounded 
with the lower sensitivity of both learning rates and starting costs to 
the forecasted outcomes as illustrated in Fig. 6.

Increasing the specific capacity of HC anodes is yet another critical 
design direction identified. With low tap and calender densities, HCs 
impose practical thickness limitations that relegate a balanced cathode 
to low areal capacity loadings (mAh cm−2). Knock-on effects include 
requiring more electrolyte volume to saturate increased porosity 
within electrodes. In addition, the aggressively slopey voltage profiles 
of HCs limit the deliverable cell energy, which negatively impacts cost 
performance48. For these reasons, HCs may enable the first genera-
tion of Na-ion batteries to demonstrate commercial viability but may 
require considerable specific capacity improvements (>400 mAh g−1) 
or outright replacement to enable long-term techno-economic com-
petitiveness with Li-ion.

Replacing HCs with alloying anodes, such as tin, is one approach 
to substantially increase anode specific capacity. In our models, 
however, despite a NaNM|Sn baseline cell starting off ~30% lower 
price than a NaNM|HC cell, its observed price curve appears to fall at 
a slower rate. This is explained by the minerals price floor and engi-
neering design floor of metallic tin both leaving little room for further 
improvements on cost and material-level performance. Therefore, 

alloy-based anodes appear to be effective tools to lower costs in the 
short term but may require cathode improvements to stay competi-
tive in the long term.

An alternative design direction is to forgo an anode material alto-
gether and opt for an anode-free cell configuration. This of course 
would require higher-risk innovation but may not require substantial 
improvements to current-generation Na-ion cathode technology. 
Roadmap ‘NaNM|AF 1’, for example, does not assume any improve-
ments to cathode specific capacity and only assumes an increase 
in areal capacity loadings of state-of-the-art nickel-based layered 
oxides while maintaining a modest upper cut-off voltage of 4.0 V. 
However, advanced separators, electrolytes and/or current collectors 
required to enable anode-free designs must do so without reversing the 
techno-economic argument. Here we highlight the importance of using 
such a techno-economic toolkit to drive research decision-making as 
opposed to applying it post facto.

Finally, despite NFPP cathodes being less than half the cost of NNM 
and exhibiting a low minerals floor, the confluence of three technical 
parameters—low specific capacity, low tap density and low voltage—
presents challenges to outright advantage on a $ kWh−1 basis. Its volu-
metric capacity (mAh cm−3) is even lower than that of HCs, which results 
in low areal capacity loadings. Necessary routes to compete therefore 
likely require dry electrode processing to enable ultra-thick electrodes 
and incorporating alloy-based anodes to increase energy density. 
However, we again note that cell-level prices do not adequately capture 
other critical performance features, and NFPP-based Na-ion cells may 
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Fig. 6 | Increasing energy densities and reducing critical minerals content 
are biggest levers to affect Na-ion cell prices. Parameter sensitivity analysis 
on the relative importance of features affecting Na-ion cell prices in 2030 (blue) 
and 2040 (orange). Error bars show standard deviation of parameter sensitivity 
between multiple one-at-a-time (OAT) perturbations, and the bottom plot shows 
the absolute values of parameter sensitivities to enable comparison. Certain 
features (for example, reducing nickel content in cathodes and increasing 

accessible voltage cut-off) are specific to layered oxide cathodes only. A pattern 
emerges indicating that design directions that increase energy densities 
(accessible voltage, cathode and anode specific capacities, and electrode 
thicknesses) are key drivers of price. In addition, the reduction of nickel content 
in cathodes has a significant impact on the minerals price floor—more so than the 
absolute price of nickel commodities. These provide guidance on road mapping 
directions to maximize the techno-economic competitiveness of Na-ion.
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prove more competitive at the systems level if safety, thermal robust-
ness and cycle life metrics can be demonstrated to exceed those of LFP.

Both Figs. 5 and 6 illustrate that technical development roadmaps 
are not only beneficial but also imperative to Na-ion’s techno-economic 
competitiveness. Relying solely on learning-by-doing from scaling the 
production of material components is insufficient to compete with the 
rapidly evolving Li-ion trends. Therefore, adjusting between the most 
conservative and aggressive market penetration scenarios yielded 
minimal feature importance on future Na-ion prices. Similarly, adjust-
ing material component learning rates to higher-than-typical (‘Aggres-
sive’) values of 20 ± 3% for the Na-ion cathode, anode and electrolyte 
also had modest feature importance. These observations suggest that 
engineering advancements are a greater lever to affect prices than the 
limited room for materials price reductions via learning-by-doing. This 
increases the likelihood of competitiveness, as price reductions do 
not rely on a chicken-and-egg problem with capturing market share.

In closing, Na-ion deserves considerable research, development 
and commercialization attention. We caution against assumptions 
and promises of immediate or near-term (pre-2030) price advantage 
against Li-ion, specifically LFP, but believe that it has a critical role to 
play in the energy transition as a viably scalable Li-ion substitute under 
circumstances of supply chain volatility. Therefore, we believe invest-
ing in Na-ion development roadmaps to maintain a competitive track 
with Li-ion would be prudent. In the same vein, investments in Li-ion 
supply chain security should not be foregone given the demonstrated 
sensitivity to supply shocks.

The ultimate objective of developing low-cost batteries is to ena-
ble rapid deployment of energy storage in vehicular and stationary 
applications to meet the needs of the energy transition. These goals 
must be met even in the face of rising geopolitical tensions and sup-
ply chain volatilities. It is therefore not only important to accurately 
forecast price trends for incumbent technologies but also critical to 
understand competitive or substitutional opportunities for emerging 
technologies. Our proposed modelling framework herein enables such 
an approach. Modelled outcomes help guide research endeavours and 
inform strategic investments commensurate with the probability of 
techno-economic competitiveness and commercial success.

Methods
Componential floor-constrained learning curves
The typical Wright’s learning curve follows the form

Y = Ax−b (1)

where the price of a technology Y at a given cumulative experience x is 
described by the price of the first unit A and a rate of price reduction b. 
Here the learning rate (or experience rate) is defined as the percentage 
price reduction after every doubling of cumulative experience, given by

LR = 1 − 2−b (2)

As established above, these curves have been demonstrated 
to accurately capture the price trends across various sectors in a 
technology-agnostic manner, but they can also overestimate price 
reductions when technologies approach their price floors dictated 
by physical limits. In such scenarios, the equation can be modified to 
incorporate a floor constraint, shown by

Y = (A0 − Afloor,0) (
xt
x0

)
−b

+ Afloor,t (3)

Here Afloor,0 and Afloor,t illustrate that the price floors can evolve 
dynamically with time. Cumulative experience is also normalized for 
a more practical implementation of the general form in equation (1) 
that enables one to use the known price and cumulative ‘incurred’ 
experience of components in the present and backcast and forecast 

accordingly. It also enables us to use actual quantities produced (in kT 
or Mm2, for example) in fitting historical data where such production 
data is available, and switch to using anticipated demand (in GWh) in 
projecting future price trends. Agreement on present pricing is there-
fore all that is required to yield continuity between historical and 
forecasted prices. In this paper, we implement dynamically varying 
minerals price floors obtained from historical and forecasted price 
trends to capture the price evolution of individual component costs 
of a battery. This enables us to capture individual learning rates, market 
growth rates and price floors between material components, which 
are unlikely to always be the same.

Physically accurate technology roadmaps
To capture the evolution of materials intensities within cell designs 
owing to technical advancements in materials performance and 
cell engineering, we implement a modified Moore’s law to capture 
improvements as a function of time. We first model physically accu-
rate cell designs via bottoms-up modelling to obtain exact materials 
intensities for each component (in kg kWh−1 or m2 kWh−1) based on the 
bill-of-materials. Cell designs are then assigned to specific years that 
represent the requisite technological progress, and we fit a curve with 
an asymptotic limit defined by theoretical or practical engineering 
limits. The curve follows the form

M = Mmin + Ae−b∗(t−t0) (4)

where Mmin is defined by equations (6)–(11) for each material com-
ponent. Here the cathode and anode minimum materials intensities 
are defined by their respective maximum theoretical specific capaci-
ties and allowable electrode thicknesses. The minimum electrolyte 
materials intensity is defined by the total pore volume within the elec-
trodes only. The minimum separator materials intensity (in m2 kWh−1) 
is defined by a maximum cathode thickness and therefore capacity 
loading. The minimum positive and negative current collector materi-
als intensities are then calculated from the separator materials intensity 
but converted to a mass basis (kg kWh−1) based on the densities and 
minimum practical thicknesses of the foils. For the other material 
components category, the asymptotic limit Mmin is omitted as there 
is no basis for a minimum limit. In a similar fashion, the maximum 
theoretical cell-level specific energy is calculated by summing up a bal-
anced anode- or cathode-limited unit-cell based on the provided limits, 
where equation (4) is modified to approach an asymptotic maximum 
as opposed to a minimum, with the form

SE = SEmax − Ae−b∗(t−t0) (5)

The equations defining the calculation of minimum materials 
intensities is as follows:

MCATtheo [
kg
kWh

] = 1
qCATtheo

[ g
mAh

] × 1
Ecell

[ 1V ] (6)

MANDtheo [
kg
kWh

] = 1
qANDtheo

[ g
mAh

] × 1
Ecell

[ 1V ] (7)

MELYtheo [
kg
kWh

] = ρELY [
g
cm3 ] × { εCATmin [%]

ρCATtheo [g/cm
3]×qCATtheo [mAh/g]

+NPRatio ×
εANDmin [%]

ρANDtheo [g/cm
3]×qANDtheo [mAh/g]

} × 1
Ecell

[ 1
V
]

(8)

MSEPtheo [
m2

kWh
]

= 2
tCATmax [ m]×ρCATtheo [g/cm

3]×qCATtheo [mAh/g]×(1−εCATmin [%])

× 1
Ecell

[ 1
V
]

(9)
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MPCCtheo [
kg
kWh

] = MSEPtheo [
m2

kWh
] × ρPCCtheo [g/cm3] × tPCCmin [μm] (10)

MNCCtheo [
kg
kWh

] = MSEPtheo [
m2

kWh
] × ρNCCtheo [g/cm3] × tNCCmin [μm] (11)

For each material component, the A and b parameters in equation 
(4) are fitted after the Mmin parameter is calculated. Occasionally, when 
one parameter is assumed to not experience marked improvements, 
such as the specific capacity of graphite (current values ~360 mAh g−1 
are already near the theoretical capacity), the fitted parameter b may 
end up <0, making the exponential term >0 with a very shallow slope. 
This is an artefact of fitting, and we do not expect actual material per-
formance to decline with time. Therefore, in cases where the fitted b 
parameter ends up negative, we instead use a flat line with zero slope 
centred at the average of the fitted values. The engineering limits used 
in our modelling are summarized in Supplementary Table 4.

Combining the modified Wright’s law with the modified 
Moore’s law
After having established (a) floor-constrained learning curves and 
(b) materials intensities for each component scaling as a function of 
cumulative experience and time, respectively, we can combine them to 
produce a generalized equation, which captures the overall cell price. 
This is represented in general form as

Ycell = (
k
∑
n
Mn,t × [(an0 − anfloor,0 )(

xn,t
xn,0

)
−bn

+ anfloor,t]) + amfg(
xmfg,t
xmfg,0

)
−bmfg

(12)

The first term of the right-hand side aggregates the individual 
material component costs of a battery cell, each defined by its own 

learning rate, −bn, normalized cumulative experience, ( xn,t
xn,0

), price floor, 

anfloor,t, and a material intensity scalar, Mn,t, that captures the kg kWh−1 
or m2 kWh−1 contribution required for the representative modelled cell 
design. Here n ∈ positive active material, negative active material, 
electrolyte, separator, positive current collector, negative current 
collector and others. While in practice, all material components will 
have hard physical limits of a price floor, some components have neg-
ligible minerals costs, including polyolefins and conductive carbons. 
Therefore, for those materials, anfloor,t and anfloor,0 are zeroed. The second 
term of the right-hand side captures the costs associated with manu-
facturing, including equipment depreciation, labour, scrap, SG&A, 
other overheads, warranty and profit. Notably, this second term is an 
unconstrained learning curve as there is no direct physical basis to 
institute a hard price floor. One may consider implementing manufac-
turing CapEx as a potential price floor, but as we do not yet have a clear 
methodology to firmly establish a minimum, we leave it unconstrained 
in this paper. Note that the learning parameter associated with manu-
facturing costs inherently captures other technical factors such as 
processing yield improvements and economies-of-scale, which we do 
not further resolve in our current work. See Supplementary Fig. 64 for 
fitting details. The materials intensity scalar is used to capture the 
improvements to cell design and active materials specific capacities, 
both of which are key contributors to historic cell price declines. This 
componential approach captures the nuance that different compo-
nents of a battery will experience different materials improvements, 
learn at different rates, experience different market growth scenarios 
and be constrained by respectively different floors.

The above learning curves can be correlated with time by defining 
individual component market growth rates. Here we use Gompertz 
sigmoidal functions to describe the annual demand of individual bat-
tery components, as they provide better fits to market projections 

than standard logistic functions18. The annual production capacity at 
year t can be defined as

qn,t = qn,base exp [ln (
qn,sat
qn,base

) (1 − exp [−rnt])] (13)

where qn,base, qn,sat  and rn represent the starting annual production 
capacity, the annual production capacity upon market saturation 
and growth rate of component n, respectively. Notably, not all battery 
components experience the same market growth conditions. For 
example, whereas the demand for graphite materials in tonnes per 
annum scales closely with the cumulative demand of total Li-ion 
batteries owing to it being the predominant anode chemistry, LFP 
and NMC materials will each scale at a lower rate owing to their frac-
tional market share. With this, the cumulative capacity can be 
obtained from

xn,t =
T
∑
t=0

qn,t (14)

Minerals pricing
Each mineral dataset was converted into aggregate averages with a 
sample size of n ≥ 3 if including proprietary industry sources, or n = 1 if 
data was only available from USGS. Owing to the proprietary nature of 
each of the industry-supplied forecasts, the minerals pricing datasets 
are averaged at each time step with 95% CI to prevent traceability to any 
one data source using the formula

μ ± 1.96 σ
√n

(15)

While USGS datasets do not provide minerals price forecasts, 
industry intelligence firms do, and we use their 2023 forecasts as our 
baseline scenario for the key minerals (lithium, nickel, cobalt and so on) 
looking forward. As expected, there is good agreement on historical 
minerals pricing but notably larger variances between forecasts within 
the next decade. Owing to inherently large uncertainties associated 
with forecasting prices of volatile minerals, we also perform analysis 
of self-generated fixed price scenarios (for example, high/mid/low) 
on the key commodities to evaluate the sensitivity of outcomes (Sup-
plementary Note 4 and Supplementary Figs. 8 and 9).

Historical material component pricing
All prices obtained from industry and literature were inflation-adjusted 
to USD2023. For any year with multiple data points, averages and CIs 
were calculated using the same methodology above. For tabulating 
annual production quantities (in kT or Mm2), gaps in data were inter-
polated using the requisite compound annual growth rates (CAGRs) 
established by the bounding years for which data was available, where 
CAGR is defined by

CAGR = (P2P1
)
1/t
− 1 (16)

Cell modelling
To accurately model cells, representative half-cell voltage versus 
specific capacity (mAh g−1) curves of positive and anode material 
candidates (for example, LFP, NMC622, NMC811 and graphite) were 
extracted from literature and were mathematically scaled to meet 
target electrode coating mass loadings, active mass fractions, areal 
capacity loadings and calender densities (and therefore porosities). 
Importantly, first cycle (de)lithiation or (de)sodiation curves were uti-
lized in order to capture differences in first cycle efficiencies between 
positive and negative electrode pairings, and full cell voltage curves 
were obtained by subtracting negative from positive. This approach 
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is critical to obtaining accurate predictions of realizable energy densi-
ties48 (Supplementary Fig. 65). Cell modelling details are discussed at 
length in Supplementary Note 9, along with validation against experi-
mental data in Supplementary Note 10, Supplementary Table 5 and 
Supplementary Figs. 66 and 67.

Once the electrode balancing procedure is completed to obtain 
accurate unit cell designs, the electrode parameters were inputted to 
the BatPaC (v5.1) spreadsheet model produced by Argonne National 
Laboratory22 to obtain exact mass and areal quantities per stored 
energy content (kg kWh−1 or m2 kWh−1). In addition, we leverage the 
detailed manufacturing cost calculations within BatPaC to obtain 
the present-day manufacturing costs on a per-kWh basis. We take this 
approach for the following reasons. (1) Despite being highly detailed in 
modelling manufacturing-related costs, BatPaC has shortcomings in 
capturing the true voltage, capacity and energy characteristics of cells 
owing to inherent limitations of a spreadsheet approach. Especially 
considering occasional mismatched first cycle efficiencies between 
cathode and anode pairings and uniquely slopey or stepped voltage 
curves of emerging Na-ion materials, the true energy (Wh)—which is 
the area underneath the voltage curve between capacity and voltage 
windows—can often be miscalculated. This may result in errors in 
calculating true $ kWh−1 (ref. 48). (2) We note that BatPaC only models 
large format (>60 Ah) pouch cells, whereas some of the cells modelled 
(for example, Tesla 4680 cylindrical cells) do not share the same for-
mat. However, we replicate all cell designs using BatPaC to enable 
systematic comparisons across generations and chemistries, and 
we also note that materials intensity, energy densities and manufac-
turing costs at the GWh scale will not deviate substantially between 
formats. This general approach allows us to systematically evaluate 
new cell designs and obtain cell manufacturing costs associated with 
each design while being more nuanced in electrode balancing. See 
Supplementary Note 11 for details on BatPaC Modifications made in 
our modelling efforts.

Current Na-ion material price assessment survey
To obtain present-day pricing of materials used in the nascent industry 
of Na-ion batteries, we take the approach of surveying industry experts 
and reports with insights on actual current-day pricing24,25. We survey 
from n = 11 sources on the key material components used in Na-ion bat-
teries. Not all sources were able to provide estimates for every material 
component, but most material components had at least n = 3 sources. 
If a given source provided a range of pricing corresponding to a low 
and high estimate, both values were used to appropriately weight the 
samples instead of the mid-range value. Specifically for biomass- and 
phenolic resin-based HC materials, which can currently be sourced 
from producers in China and Japan at substantially disparate costs, we 
also delineate which region the prices are quoting. In our modelling, we 
only use prices from China given the substantially higher concentration 
of Na-ion commercialization activity in that region. The results of our 
pricing survey are shown in Fig. 3b.

Data availability
The minerals prices and forecasts, cell price assessments, material price 
assessments and market size forecasts are provided from third-party 
industry sources that have contributed to this work and are individually 
considered proprietary. However, aggregate averages and confidence 
intervals are published in this work, and such data are available in Excel 
format in the Supplementary Information. Source data are provided 
with this paper.
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